Deciphering the Origins and Tracking the Evolution of Cholera Epidemics with Whole-Genome-Based Molecular Epidemiology
نویسندگان
چکیده
The devastating Haitian cholera outbreak that began in October 2010 is the first known cholera epidemic in this island nation. Epidemiological and genomic data have provided strong evidence that United Nations security forces from Nepal introduced toxigenic Vibrio cholerae O1, the cause of epidemic cholera, to Haiti shortly before the outbreak arose. However, some have contended that indigenous V. cholerae contributed to the outbreak. In a recent paper (mBio 4:e00398-13, 2013), L. S. Katz et al. explored the nature and rate of changes in this ancient pathogen's genome during an outbreak, based on whole-genome sequencing of 23 Haitian V. cholerae clinical isolates obtained over a 20-month period. Notably, they detected point mutations, deletions, and inversions but found no insertion of horizontally transmitted DNA, arguing strongly against the idea that autochthonous V. cholerae donated DNA to the outbreak strain. Furthermore, they found that Haitian epidemic V. cholerae isolates were virtually untransformable. Comparative genomic analyses revealed that the Haitian isolates were nearly identical to isolates from Nepal and that the Nepalese-Haitian isolates were distinguishable from isolates circulating elsewhere in the world. Reconstruction of the phylogeny of the Haitian isolates was consistent with a single introduction of V. cholerae to Haiti sometime between late July and late October 2010, dates remarkably concordant with epidemiological observations. In aggregate, this paper provides additional compelling evidence that the V. cholerae strain responsible for the Haitian cholera epidemic came from Nepal and illustrates the power of whole-genome-based analyses for epidemiology, pathogen evolution, and forensics.
منابع مشابه
Achieving Effective Treatment Goals against New Coronavirus (SARS-CoV-2) by Identifying the Molecular Details of the Virus Genome
Introduction: We are currently faced with a global epidemic of a new coronavirus (SARS-CoV-2) that It affects not only thousands of people in China, but all over the world. The rapid increase in cases appears to be related to the active genome of the virus, which may affect its pathogenesis. An understanding of the novel coronavirus genomic organization will help us in understanding their origi...
متن کاملCholera, Migration, and Global Health – A Critical Review
Cholera is an acute diarrheal infection caused by the ingestion of food or water contaminated with the bacterium Vibrio cholerae. The causative agent of this disease was originally described by Filippo Pacini in 1854, and afterwards further analyzed by Robert Koch in 1884. It is estimated that each year there are 1.3 million to 4 million cases of cholera, and 21 000 to 143 000 deaths worldwide ...
متن کاملGenome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics
During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how curr...
متن کاملDeciphering the Origin of the 2012 Cholera Epidemic in Guinea by Integrating Epidemiological and Molecular Analyses
Cholera is typically considered endemic in West Africa, especially in the Republic of Guinea. However, a three-year lull period was observed from 2009 to 2011, before a new epidemic struck the country in 2012, which was officially responsible for 7,350 suspected cases and 133 deaths. To determine whether cholera re-emerged from the aquatic environment or was rather imported due to human migrati...
متن کاملEpidemiologic interactions, complexity, and the lonesome death of Max von Pettenkofer.
In the mid-19th century, the German hygienist Max von Pettenkofer viewed cholera as resulting from the interaction between a postulated cholera germ and the characteristics of soils. In order to cause cholera, the cholera germ had to become a cholera miasma, but this transformation required prolonged contact of the germ with dry and porous soils when groundwater levels were low. This hypothetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013